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EXCITATION OF A TEMPERATURE WAVE BY A
RECTANGULAR THERMAL SURFACE PULSE

A. G. Goloveiko and V. I. Martynikhina UDC 537.52:536.,3

We calculate the temperature field in a metal under the action of a rectangular thermal surface
impulse with a fixed total energy and varying duration. It is shown that for a given duration of
this impulse, conditions are created which ensure a maximal shift of the melting isotherm to-
ward the interior of the metal.

In the present work we consider a thermophysical process in a metal in regimes when the following con-
dition holds for the thermal pulse applied at the boundary:

W = Ft = const, (1)

where T is the thermal flux density, whichis constant during the time of its actiont. The condition W = constant
can be realized in various ways: from a short pulse of a high-density thermal flux, to an extended pulse for a
low density of the thermal flux. Condition (1) essentially describes a multitude of pulses which differ by para-
meters F and t but have the same parameter W.

An analysis shows that the action of thermal pulses which differ in parameters F and t but have the same
parameter W has appreciably different results on the metal.

For a long pulse duration the high thermal conductivity characteristic for metals ensures the transfer
of the heat flux far into the metal. Therefore, the long pulse excites a deep but weak heating of the metal
whose temperature field is extended over a large region. Towards the end of the pulse, the melting isotherm
remains near the surface of the metal because of the weak heating. For short pulses of the same energy W,
on the other hand, the metal is heated to large temperatures, and the temperature field is concentrated near
the surface of the metal. In this case, the melting isotherm towards the end of the pulse also remains near
the surface of the metal but for a different reason, because of the spatial concentration of the temperature
field.

Clearly, in the intermediate conditions between long and short duration at a given energy W, the melting
isotherm will be displaced by the largest amount. The aim of the present work is to substantiate this asser-
tion quantitatively because of its importance in the analysis of the appropriate scientific and applied problems.

In the solution of the problem formulated above we shall limit ourselves to the analysis of a one-dimen-
sional thermophysical process, and neglect the phase transformations. The process will be approximated by
the problem of excitation of a temperature field (or a temperature wave) by a rectangular thermal pulse:
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TABLE 1. Values of M (m*-sec/J3%) and N (m®/J) for Some

Metals
i
Metal 1‘ M N Metal M N
Al 1,565-10715 2,66-10710 Ag 1,88.10718 | 1,18.1p710
Fe 4,22.10~16 5,44.10~11 Cd 5,86.10715 | 3,98.107 10
Ni 2,48-10-16 4,90-10~11 Sn 5,20-10715 | 3,32.107 10
Cu 1,00-10—16 8,20.10—11 w 2,51.10717 | 3,00.10711
Zn 1,78-10~15 2,10.10710 Pb 2,92.10714 | 5,75.10710
Mo 9,25.10"17 4,60.10711 Co 4,96.10716 | 4,95.10711
TABLE 2. Values of Functions 1, '8, and
n f1 Bz n B1 Bz
0 0 5,73 0,91 0,405 1,91
0,1 0,00082 5,37 0,92 0,438 1,86
0,2 0,0038 5,00 0,93 0,466 1,76
0,3 0,0102 4,61 0,94 0,491 1,70
0,4 0,0240 4,25 0,9 0,528 1,63
0,5 0,0455 3,83 0,96 0,562 1,53
0,6 0,0780 3,41 0,97 0,614 1,48
0,7 0,133 2,98 0,98 0,681 1,37
0,8 0,224 2,51 0,99 0,753 1,26
0,9 0,380 1,98 1 1 1
oT (x, ¢ T (x, 1 aT (0, = 0T (oo, T
() _, 0T . 0700 g 0T(e,1) )
Jt Ox? Ox 0x

0<CxCoo; Tx, 0)=Ty 0Tl
where t is a parameter of the pulse, i.e., its total duration, and 7 is the instantaneous time of its action.

The justification of the applicability of this approximation will be given in the concluding part of this
work.

The solution of problem (2) is known to be [1]

. Cv [T (x) — 3)
1erfc(27;a_’c): vl (22 Tol l/ £,

T

The important point in this solution for 7=t is the point x = xpy, at which the temperature corresponds to
the melting of the metal: T(xm) = Tm. One can also choose another characteristic point X = xy™ at which the
temperature coincides with the reduced melting temperature:

TGt =T* =T, + % )

At the point x = x*, noting that r=t and F = W/t, Eq. (3) can be written in the form

, o\ Cy(Th —To)val (5)
ierfc (2Va—t )~ T R

A similar expression can also be written for the point xpy.

Denoting the argument of the special function

X512y ot = a (6)
and solving Eq. (5) with respect to the time of duration of the thermal pulse, we find

we . (7)
aCy (T — T,

t = 4 (ierfca)?
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Noting, moreover, that according to (6), vat = xp/2a, Eq. (5) can also be solved for the coordinate of the
characteristic point of the thermal field:

x* =4aierfca LA . (8)
m Cv(Tm —To)

Equations (7) and (8) are solvable since the special function ierfc a is tabulated [1] and the functions
d(lerfca) =p, daierfca=7 9

can be assumed known. The o dependence of these functions is shown in Fig. 1. It is seen that for some
a = ay, the functions reach their maximum values v = vy, 4 =pg. The values aq, vy, and gy can, with suffi-
cient accuracy, be obtained from the tables of the function ierfc o [1] or from Fig. 1:

oy = 0.430; o= 0.222; 7, = 0.405. (10)

Using these data, Eqgs. (7) and (8) can be written in their final form, whichis useful for practical calcula~

tions:
X% = qNW; ¢ =pMW2, (11)
where
12
_ Vo . M= Ho . 12)
Cy(TF —To) aCh(TE —Top '
Y s
n=-—; Bp=-"—.
Yo Mo (13)

The values of N and M for some metals at T, = 300°K are given in Table 1. It is seen that these quanti-
ties differ appreciably for different metals.

It should be emphasized that the functions n and 8 in (11) depend on o, and form a two-valued corres-
pondence; one value of n corresponds to two values of 3. For the convenience of practical calculations, Table
2 gives the corresponding values of these functions. Each line contains one value of n and the two correspond-

ing values of By and B,.

It is seen from Table 2 that for n =1, 8, = 8, =1. For a pulse with a fixed parameter W, these para-
meters determine the conditions when the pulse excites the greatest depth of heating (melting) of the metal. It
follows from Eq. (11) that this optimum regime is defined by the following formulas:

xi =NW, 1= MW2 (14)

In what follows it is expedient to divide Eq. (11) into two regions of the parameter t (ft <t; and t > t3) in
view of the two-valued correspondence between the functions 7 and 8:

Xk =0NW, t=pMW2, {<t, (15)

x¥ =aNW, t=pMW2, ¢>1,. (16)

An important law follows from the data in Table 2 and from the equations above: For n —~0 g — 0, and
By —5.73. This indicates that in the region t <t;, as the duration of the impulse increases, one has x;, ~0
asymptotically, and in the region t > t; when the duration increases up to

tn = 5.73MW2, 1)

one has X =0.

Equation (17) defines the maximum duration of the thermal pulse with a given parameter W, at which
the isotherm T = T";n (or T = Tyy,) reaches the boundary of the metal. For longer durations of the thermal
pulse (t > ty), the melting point is not reached at the boundary, and the pulse has no erosive results.

By analyzing Eq. (17) and taking into account the data in Table 1 it is seen that for a given W, the differ-
ence in the values of t;, for different metals can be substantial, and can reach three orders of magnitude. This
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Fig. 1. Dependence ona of the functions vy and u.

Fig 2. Dependence of the displacement of the melting isotherm
m (um) on the duration of the applied rectangular thermal pulse
(sec) for copper and W =1 J/mm®.

expresses the individual properties of the metals with respect to the action of a thermal pulse with a given
parameter W.

Figure 2 gives the results of calculation of x and t from Egs. (14)-(17) and from the data of Table 2.
The calculations were carried ouf for copper and W 1J/mm?

The dependence Xin = xm (t) shown in Fig. 2 illustrates in a clear and specific form the fact that, for a
pulse with a given energy W, there is indeed a duration t, for which the melting isotherm is displaced towards
the interior of the metal by the greatest amount.

In conclusion one should discuss the possibility of application of the results. First of all, the starting
problem (2) does not take into account the melting process, and this results in the approximate form of the re-
sults. However, a corresponding analysis of the more general Stephan problem, taking into account the melt-
ing process, which was considered in {2] showed that the 1ncrease in aceuracy is of the order of 10%, and this
only pertains to the vicinity of the max1mum of the curve Xm = x (t) where the discrepancy is greatest. Con-
sequently, the obtained dependence xm xm (t) can, with acceptable accuracy, be used to find the shift of the
melting front. This conclusion is justifiable only for rectangular pulses in the region t < ty; when ty is not
too large, and the process remains one-dimensional.

In addition, the starting problem (2) does not take info account evaporation. A short pulse in which, for
a given W, the heat flux density becomes large excites a high-temperature field and causes intensive evapora-
tion. The solution of the problem which takes into account this process has been solved by us elsewhere [3, 4],
and leads in many ways to different conclusions. The increased accuracy of the shift of the melting isotherm
{or melting front), however, consists of less than 10%. This result also indicates the applicability of the ob-
tained results for qualitative discussions.

m = th (t) is of interest in applications. Figure 2

indicates that for short rectangular pulses with a given parameter W, the position of the melting isotherm be-
comes more shallow and consequently, the pulses cause less damage. It is also seen that to obtain the maxi-
mum depth of the melting isotherm for the same W, it is necessary only to ensure an appropriate duration of

the pulse. One is also interested in the durations t > tm when the rectangular pulses with a given parameter

W cannot bring about any phase transformation or metal damage.

It should also be noted that the obtained dependence x*

NOTATION

Cy, volume specific heat; a, thermal diffusivity; Ly, volume specific heat of melting; Ty, melting
temperature of the metal; T;, initial temperature; and W, surface energy density of the heat pulse.
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